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Abstract. Commuting translations in the phase plane are shown to be observables that are
canonically conjugate to the annihilation operator of the harmonic oscillator states. The
eigenfunctions and the eigenvalues of these commuting operators form thekq-representation.
The eigenfunctions of the annihilation operator are the coherent states. Thekq-eigenfunctions
and the coherent states are the limiting cases of quantum-mechanical and classical wavefunctions,
respectively, and it is satisfying to discover that they relate to canonically conjugate operators.

In elementary quantum mechanics the coordinate-x or the momentum-p representations are
of central importance. The two operatorsx̂ and p̂ satisfy the fundamental commutation
relation

[x̂, p̂] = ih̄ (1)

whereh̄ is the Planck constanth divided by 2π . The operatorŝx and p̂ and their classical
counterparts are called the canonical coordinate and momentum and they are conjugate to
one another in the following sense. They satisfy the commutation relation in equation (1)
and each of them (x̂ or p̂) forms a complete set of commuting operators [1]. In this
elementary case,̂x by itself (or p̂ by itself) forms a complete set according to the definition
of Dirac [1] because any operator that commutes withx̂ is necessarily a function of it.
Correspondingly the single operatorx̂ (or p̂) is a complete set of commuting operators.
This also means that the eigenfunctions ofx̂ (or p̂) form a complete set of functions in the
x-variable. A similar situation exists for thez-componentˆ̀z of the angular momentum and
the angleϕ̂ in the xy-plane

[ ˆ̀z, exp(iϕ̂)] = h̄ exp(iϕ̂) (2)

whereϕ appears in the function exp(iϕ) which is periodic inϕ with period 2π . For the
angular coordinate,̀̂z and exp(iϕ̂) are the conjugate operators [2, 3]. Again each of them
forms a complete set of commuting operators. However, unlikex̂ and p̂ whose spectrum
is the whole real axis, the spectrum ofˆ̀z is all the integers, while the spectrum of exp(iϕ̂)
is the unit circle. For one degree of freedom there is another pair of operators, the number
and the phase, which are nearly conjugate, in the sense of equation (2), and which have
attracted much attention through the years [2–4]. The word ‘nearly’ is used here because
no unitary operator of the kind exp(iϕ̂) can be defined for the phase.

The notion of conjugation of̂x andp̂ can also be expressed in a different way. For this
we consider their exponentiated forms:

exp

(
i

h̄
x̂γ

)
exp

(
i

h̄
p̂δ

)
. (3)
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It is easy to check by using the fundamental commutation relations in equation (1) that

exp

(
− i

h̄
x̂γ

)
p̂ exp

(
i

h̄
x̂γ

)
= p̂ + γ

exp

(
− i

h̄
p̂δ

)
x̂ exp

(
i

h̄
p̂δ

)
= x̂ − δ. (4)

What these relations show is that exp((i/h̄)x̂γ ) is shiftingp̂ by γ , and similarly exp((i/h̄)p̂δ)
shifts x̂ and −δ. One can, therefore, also say thatx̂ and p̂ are conjugate operators if
equations (4) are satisfied. Similar relations can be written for the angular momentum and
angle operators in equation (2).

One often builds the annihilation operator for a Harmonic oscillator out ofx̂ and p̂,

â = 1

λ
√

2

(
x̂ + i

h̄
λ2p̂

)
(5)

with λ being a constant. This operator is closely related to coherent states which were
discovered in the very beginning of quantum mechanics [5] and which acquired much
popularity with their application to quantum optics [6]. By definition, coherent states|α〉
are eigenstates of the annihilation operatorâ

â|α〉 = α|α〉 (6)

whereα is a complex number given by

α = 1

λ
√

2

(
x̄ + i

h̄
λ2p̄

)
(7)

with x̄ and p̄ being the coordinate and momentum expectation values in the coherent state
|α〉. Coherent states are of much importance in quantum physics and there have been
numerous books written about them [7].

In view of the importance of coherent states and in view of the fact that they are
eigenstates of the annihilation operatorâ (equation (6)) we look in this letter for a complete
set of commuting operators that is conjugate toâ. As is well known, together witĥa one
usually defines its Hermitian conjugateâ† and they satisfy the commutation relation [6]

[â, â†] = 1. (8)

This commutator looks similar to the relation betweenx̂ and p̂ in equation (1). However,
â† is not the conjugate operator tôa becausêa† has no eigenstates [8]. In this letter we
prove that the complete set of commuting translations in the phase plane is conjugate to
â. This is the same set of translations which defines thekq-representation [9], and our
proof establishes, therefore, a close relationship between the coherent states and thekq-
representation.

The proof is entirely elementary and it starts with the shift operatorD(α):

D(α) = exp(αâ† − α∗â) = exp

[
i

h̄
(p̄x̂ − x̄p̂)

]
= D̂†(−α) (9)

whereα∗ is the complex conjugate ofα in equation (7). The annihilation operatorâ and
the shiftD̂(α) satisfy the following commutation relation [6, 8]

[â, D̂(α)] = αD̂(α). (10)

This relation looks similar to equation (2) for the angular coordinate. However,D̂(α) for a
givenα is not a complete set of commuting operators. This is seen from the commutation
relation for two shift operatorŝD(α) andD̂(β):

D̂(α)D̂(β) = exp(αβ∗ − α∗β)D̂(β)D̂(α). (11)
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Whenαβ∗ − α∗β = 2π in with integern, the operatorD̂(β) commutes withD̂(α). This
means thatD̂(α) by itself is not a complete set of commuting operators. One can, however,
check that the set of operatorŝD(αmn)

D̂(αmn) = (−1)mn exp

(
− i

h̄
p̂mb

)
exp

(
ix̂n

2π

b

)
(12)

for an arbitrary constantb is a complete commuting set of operators. They are obtained
from equation (9) by substitutingαmn for α

αmn = 1

λ
√

2

(
mb + iλ2n

2π

b

)
. (13)

This fact is known for thekq-representation [9], for which thekq-coordinates determine
the eigenvalues of the complete set of the commuting operators in equation (12). We have

D̂(αmn)|kq〉 = (−1)mn exp

(
−ikmb + iqn

2π

b

)
|kq〉 (14)

Herek is the quasi-momentum and it varies from 0 to 2π/b andq is the quasi-coordinate
which varies between 0 andb. Equation (10) can also be rewritten as follows withα
replaced byαmn:

[â, D̂(αmn)] = αmnD̂(αmn). (15)

SinceD̂(αmn) is a complete set of commuting operators, forαmn given by equation (13), we
can now claim thatD̂(αmn) is the conjugate set to the annihilation operatorâ: equation (15)
for â andD̂(αmn) is of the same kind as equations (1) and (2) for the elementary operators
in quantum mechanics, and each of the operatorsâ and D̂(αmn) form a complete set of
commuting operators. As is well known (see later)â is overcomplete. We can rewrite
equation (15) so that it assumes the form of equations (4). We have

D̂†(αmn)âD̂(αmn) = â + αmn (16)

whereD̂†(α) is given in equation (9).
This shows thatD̂(αmn) is a shift operator of̂a in exactly the same way as was shown

for x̂ and p̂ (equations (4)). With equation (16) at hand we can state thatD̂(αmn) is a
complete commuting set of operators which is conjugate to the annihilation operatorâ. The
conjugacy ofD̂(αmn) to â can also be seen on a qualitative level. The eigenstates ofâ are
the coherent states in whichx andp are optimally localized [5, 6, 8]. On the other hand,
in the eigenstates|kq〉 of D̂(αmn) (equation (14)) bothx andp are completely delocalized.
This feature is similar to the one for the operatorsx̂ and p̂ in equation (1): for states in
which x is well localized,p is delocalized, andvice versa, whenp is very well localized,
x is poorly determined. The similarity between the operators in equations (1) and (15)
persists also in other ways but, in general, there are also differences which stem from the
non-Hermiticity of the annihilation operator̂a. Let us consider these differences in more
detail. The transformation〈x|p〉 between thex andp-representations is [1]

〈x|p〉 = 1√
2πh̄

exp

(
i

h̄
xp

)
. (17)

The square of the absolute value|〈x|p〉|2 is a constant equal to 1/2πh̄ and is proportional to
the probability of measuringx in the|x〉-state or of measuringp in the|p〉-state. This shows
that for the operatorŝx andp̂, which are both Hermitian, when one of them is well defined
the other one is completely undetermined. For the conjugate operatorsâ and D̂(αmn) the
situation is different because the annihilation operatorâ is not Hermitian and its eigenstates
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(equation (6)) form a highly overcomplete system of states [6, 8]. As was first suggested
by von Neumann [10] and later proven in a number of publications [11–13] the discrete set
of coherent states|αmn〉 with αmn as given in equation (13) is complete. The|αmn〉-states
are centred on a rectangular lattice in thexp-plane with a unit cell area ofh, the Planck
constant. This is the von Neumann lattice [14]. Having in mind thatD(α)|0〉 = |α〉, one
can see from equation (14) that the set|αmn〉 assumes a simple form when written in the
kq-representation. (See the expression for generalα, 〈kq|α〉) [13]

〈kq|αmn〉 = (−1)mn exp

(
−ikmb + iqn

2π

b

)
〈kq|0〉 (18)

where〈kq|0〉 is the ground state of the harmonic oscillator in thekq-representation. The
latter is [9]

〈kq|0〉 =
( a

2π

)1/2∑
n

exp(ikbn)ψ0(q − nb)

=
(

b

2λπ3/2

)1/2∑
n

exp(ikbn) exp

[
− (q − nb)

2

2λ2

]
(19)

with

ψ0(x) =
(

1

λπ1/2

)1/2

exp

(
− x

2

2λ2

)
(λ a constant) being the ground state of the harmonic oscillator in thex-representation.
The exponential term in equation (18) is similar to the function in equation (17): thekq-
coordinates and the integersm andn appear in the exponent of equation (18) in the same
way asx andp appear in (17). From this point of view there is a full analogy between
the conjugate pairŝx, p̂ andâ, D̂(αmn). However, despite these similarities, the eigenstates
|αmn〉 for differentm andn are not orthogonal, and the square of the absolute value of the
function 〈kq|αmn〉 in (18) is not a constant as in the case of〈x|p〉 (17). From equation (18)
we see that|〈kq|αmn〉|2 is

|〈kq|αmn〉|2 = |〈kq|0〉|2. (20)

It does not depend onm andn but it depends onk andq. In this connection the following
remark can be made. For the operatorsx̂ and p̂ (both Hermitian), the shift relations hold
for both of them as given by equation (4). On the other hand, for the conjugate operators
â andD̂(αmn) we have written only one shift relation witĥD(αmn) being the shift operator
of â (equation (16)). The reason for this is thatD̂(αmn) is a unitary operator and is similar
to the operators in equation (3). However, sinceâ is not Hermitian, its exponentiation does
not lead to a unitary shift operator. We see, therefore, that while full symmetry exists for
the x andp conjugate operators, there is no such symmetry for the conjugate operators for
â andD̂(αmn).

Having established that the set̂D(αmn) is conjugate to the well known annihilation
operatorâ, it is of interest to consider more closely the properties and the significance of
D̂(αmn). It is simple to check that for any two states|1〉 and |2〉 the wavefunctionsψ1(x)

andψ2(x) in the x-representation can be written

ψ∗1 (x)ψ2(x) = 1

2πh̄

∫
exp

(
i

h̄
px

)
〈1| exp

(
− i

h̄
x̂p

)
|2〉 dp. (21)

Similarly, for their Fourier transformsF1(p) andF2(p) we have

F ∗1 (p)F2(p) = 1

2πh̄

∫
exp

(
− i

h̄
px

)
〈1| exp

(
i

h̄
p̂x

)
|2〉 dp. (22)
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From equation (21) we see that for the product of the wavefunctionsψ∗1 (x)ψ2(x) in the x-
representation, the shift operator exp(−(i/h̄)x̂p) in p-space appears in the sandwich between
the states|1〉 and |2〉 on the right-hand side of this equation. Similarly, for the product
F ∗1 (p)F2(p) in equation (22) the shift operator exp((i/h̄)p̂x) in x-space appears in the
sandwich on the right-hand side. One should expect that, for the productC∗1(k, q)C2(k, q)

of two wavefunctions in thekq-representation, the shift operatorD̂(αmn) in equation (12)
will appear, because it leads to discrete shifts both inx andp-directions. Indeed, one can
show that [14]

C∗1(k, q)C2(k, q) = 1

2π

∑
m,n

(−1)mn〈1|D̂†(αmn)|2〉 exp

(
iq

2π

b
n− ikbm

)
= 1

2π

∑
m,n

〈1| exp

(
− i

h̄
p̂mb

)
exp

(
ix̂n

2π

b

)
|2〉 exp

(
iq

2π

b
n− ikbm

)
. (23)

The expressions in equations (21)–(23) give interference terms between the states|1〉 and
|2〉 in the x, p andkq-representations, respectively.

In the context of this paper, of particular interest is equation (23) which we rewrite for
the case|1〉 = |2〉 = |α〉 (|α〉 being the coherent state):

|〈kq|α〉|2 ≡ |Cα(k, q)|2 = 1

2π

∑
m,n

(−1)mn〈α|D̂†(αmn)|α〉 exp

(
iq

2π

b
n− ikbm

)
. (24)

By using the following formulae [6]

D̂†(αmn)D̂(α) = D(α − αmn) exp[− 1
2(α
∗αmn − αα∗mn)] (25)

〈α|β〉 = exp(α∗β − 1
2|α|2− 1

2|β|2) (26)

equation (24) becomes (withb2/2πλ2 = 1)

|〈kq|α〉|2 = 1

2π

∑
m,n

(−1)mn exp
[
−π

2
(m2+ n2)

]
exp

[
i
2π

b
(q − x̄)n− ib

(
k − p̄

h̄

)
m

]
.

(27)

Here x̄ and p̄ appear in the definition ofα in equation (7), and have the meaning of the
average coordinate and of the average momentum, respectively, in the coherent state|α〉.
In view of the fact thatâ and D̂(αmn) are conjugate operators (equations (15) and (16))
it is of interest to consider the result in equation (27) in more detail. As was pointed out
before, the von Neumann set of coherent states|αst 〉 with s and t integers, is complete (see
equation (18)) [10–13]. It is easy to check that the expression in equation (27) does not
change when̄x goes intox̄ + sb, andp̄ goes intop̄ + th̄(2π/b):

|〈kq|x̄ + sb, p̄ + th̄(2π/b)〉|2 = |〈kq|x̄, p̄〉|2. (28)

This is a generalization of the result in equation (20) and is a consequence of the periodicity
of |〈kq|x̄, p̄〉|2 in x̄ and p̄. One can also rewrite equation (27) in the following way,

|〈kq|x̄, p̄〉|2 = |〈k − (p̄/h̄), q − x̄|0〉|2 (29)

where by |0〉 we denote the ground state of the harmonic oscillator (equations (18) and
(19)). As is well known [13, 15], the wavefunction〈k, q|0〉 has a zero atk = π/b, q = b/2.
In [15] a plot is given of|〈kq|0〉| which shows that|〈kq|0〉|2 has a maximum atk = q = 0.
The result in equations (27) and (29) demonstrates, therefore, a very interesting feature of
the coherent state|α〉 ≡ |x̄, p̄〉 in the kq-representation: the probability of measuring the
quasi-momentumk and the quasi-coordinateq is maximum whenk = p̄/h̄, q = x̄ and it



L554 Letter to the Editor

vanishes whenk−(p̄/h̄) = π/b, q−x̄ = b/2. This leads us to a new physical (non-intuitive)
interpretation of the zero of thekq-function 〈kq|0〉. According to equation (29),k andq in
〈kq|0〉 can be considered as the differences between the quasi and the average coordinates
and momenta. The zero of〈kq|0〉 then means that the coherent state|x̄, p̄〉 has nokq-
component forq− x̄ = b/2, k− (p̄/h̄) = π/b. For another physical interpretation of a zero
of thekq-function the reader is referred to [16] in connection with the quantum Hall effect.
As was mentioned above, the variation limits ofk and q are 06 k 6 2π/b, 0 6 q 6 b.
This defines the von Neumann–Gabor unit cell in the phase plane [17]. As is seen from
equation (28) the probability of measuringk andq in any coherent state is fully determined
by its values in a von Neumann-Gabor unit cell.

In conclusion, it is shown that the annihilation operatorâ for coherent states and the
commuting translationsD̂(αmn) in the phase plane, which define thekq-representation,
form a set of conjugate operators. The eigenstates|α〉 ≡ |x̄, p̄〉 of â are the most localized
states in coordinatex and momentump, while the eigenstates|kq〉 of D̂(αmn) exhibit no
localization whatsoever inx andp. The product of uncertainties assumes the minimum in
a coherent state,1x1p = h̄/2. In akq-state this product is infinite. It is very satisfying to
discover that̂a andD̂(αmn) are conjugate operators.

The author acknowledges discussions with Professors A Grossmann, A Mann, M Marinov,
L Michel, A Peres and B Shapiro, and the support of this work by the Israel Science
Foundation.
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