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Abstract. Commuting translations in the phase plane are shown to be observables that are
canonically conjugate to the annihilation operator of the harmonic oscillator states. The
eigenfunctions and the eigenvalues of these commuting operators forky-ffepresentation.

The eigenfunctions of the annihilation operator are the coherent stateskgTéigenfunctions

and the coherent states are the limiting cases of quantum-mechanical and classical wavefunctions,
respectively, and it is satisfying to discover that they relate to canonically conjugate operators.

In elementary quantum mechanics the coordinate-the momentunp representations are
of central importance. The two operatotsand p satisfy the fundamental commutation
relation

[x, p]l =R @)

where# is the Planck constarit divided by 2r. The operatorg and p and their classical
counterparts are called the canonical coordinate and momentum and they are conjugate to
one another in the following sense. They satisfy the commutation relation in equation (1)
and each of themx( or p) forms a complete set of commuting operators [1]. In this
elementary case, by itself (or p by itself) forms a complete set according to the definition

of Dirac [1] because any operator that commutes witis necessarily a function of it.
Correspondingly the single operatér(or p) is a complete set of commuting operators.
This also means that the eigenfunctionscaor p) form a complete set of functions in the
x-variable. A similar situation exists for thecomponent. of the angular momentum and

the anglep in the xy-plane

[0, expig)] =T expig) @)

where ¢ appears in the function efip) which is periodic ing with period 2r. For the
angular coordinatef, and expi¢) are the conjugate operators [2,3]. Again each of them
forms a complete set of commuting operators. However, unliked p whose spectrum
is the whole real axis, the spectrum é;fis all the integers, while the spectrum of &)
is the unit circle. For one degree of freedom there is another pair of operators, the number
and the phase, which are nearly conjugate, in the sense of equation (2), and which have
attracted much attention through the years [2—-4]. The word ‘nearly’ is used here because
no unitary operator of the kind exg) can be defined for the phase.

The notion of conjugation of and p can also be expressed in a different way. For this
we consider their exponentiated forms:

exp(}il_iy) exp(}i_lﬁ8> . 3)
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It is easy to check by using the fundamental commutation relations in equation (1) that

i R

o L) e L5) 5
i i N

exp(—ﬁpﬁ)xexp<hp8) =x-34. 4)

What these relations show is that é&ph)xy) is shifting p by v, and similarly exg(i /&) ps)
shifts x and —§. One can, therefore, also say thatand p are conjugate operators if
equations (4) are satisfied. Similar relations can be written for the angular momentum and
angle operators in equation (2).

One often builds the annihilation operator for a Harmonic oscillator out ahd p,

a= Mfz(” /\2) (5)

with A being a constant. This operator is closely related to coherent states which were
discovered in the very beginning of quantum mechanics [5] and which acquired much
popularity with their application to quantum optics [6]. By definition, coherent states

are eigenstates of the annihilation operator

ale) = ola) (6)
wherea is a complex number given by
1
+ AZ ) 7
W ( "

with x and p being the coordmate and momentum expectation values in the coherent state
|a). Coherent states are of much importance in quantum physics and there have been
numerous books written about them [7].
In view of the importance of coherent states and in view of the fact that they are

eigenstates of the annihilation operafofequation (6)) we look in this letter for a complete
set of commuting operators that is conjugateitoAs is well known, together witlé one
usually defines its Hermitian conjugaié and they satisfy the commutation relation [6]

[a,a'] = 1. (8)
This commutator looks similar to the relation betweeand p in equation (1). However,
a' is not the conjugate operator fobecausei! has no eigenstates [8]. In this letter we
prove that the complete set of commuting translations in the phase plane is conjugate to
a. This is the same set of translations which definesifeepresentation [9], and our
proof establishes, therefore, a close relationship between the coherent states anpd the

representation.
The proof is entirely elementary and it starts with the shift operatar):

D(a) = explad’ — a*a) = exp[;_l(ﬁf - xﬁ)} = Di(—a) (9)
wherea” is the complex conjugate ef in equation (7). The annihilation operatdrand
the shift D(«) satisfy the following commutation relation [6, 8]

[, D(@)] = aD(). (10)

This relation looks similar to equation (2) for the angular coordinate. Howeyer) for a
givena is not a complete set of commuting operators. This is seen from the commutation
relation for two shift operator® (o) and D(8):

D(@)D(B) = explap* — & B)D(B) D (). (11)
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Whenag* — a*f = 27in with integern, the operatorD(8) commutes withD(a). This
means thaD («) by itself is not a complete set of commuting operators. One can, however,
check that the set of operatof«,,,)

D () = (=1 exp (—]'1_ ﬁmb) exp (mi’) (12)

for an arbitrary constant is a complete commuting set of operators. They are obtained
from equation (9) by substituting,,, for «

1 2
O = —— | mb + iA2n> . 13
Aﬁ( b (13)

This fact is known for thekg-representation [9], for which theg-coordinates determine
the eigenvalues of the complete set of the commuting operators in equation (12). We have

ﬁ(am,,)|kq) = (=™ exp(—ikmb + iqnzz;[) lkg) (14)

Herek is the quasi-momentum and it varies from 0 to/2 andgq is the quasi-coordinate
which varies between 0 anbl Equation (10) can also be rewritten as follows with
replaced by,,,:

[&v é(Olmn)] = amnb(amn)' (15)

SinceD(a,,) is a complete set of commuting operators, dgy, given by equation (13), we

can now claim thaD («,,) is the conjugate set to the annihilation operagtoequation (15)

for & and D(a,,) is of the same kind as equations (1) and (2) for the elementary operators
in quantum mechanics, and each of the operaioend [)(am,l) form a complete set of
commuting operators. As is well known (see latérjs overcomplete. We can rewrite
equation (15) so that it assumes the form of equations (4). We have

DY ()@ D (@n) = @ + n (16)

where D (a) is given in equation (9).

This shows tha () is a shift operator ofi in exactly the same way as was shown
for £ and p (equations (4)). With equation (16) at hand we can state fhat,,) is a
complete commuting set of operators which is conjugate to the annihilation opé&rakbe
conjugacy of D(ams) t0 @ can also be seen on a gualitative level. The eigenstatésaoé
the coherent states in whichand p are optimally localized [5, 6,8]. On the other hand,
in the eigenstatefg) of D(a,.,) (equation (14)) bothx and p are completely delocalized.
This feature is similar to the one for the operatérand p in equation (1): for states in
which x is well localized, p is delocalized, andice versawhen p is very well localized,
x is poorly determined. The similarity between the operators in equations (1) and (15)
persists also in other ways but, in general, there are also differences which stem from the
non-Hermiticity of the annihilation operatér. Let us consider these differences in more
detail. The transformatiofx|p) between ther and p-representations is [1]

1 i
i) = o exp(n ) an
The square of the absolute vallie|p)|? is a constant equal to/27% and is proportional to
the probability of measuring in the |x)-state or of measuring in the | p)-state. This shows
that for the operator$ and p, which are both Hermitian, when one of them is well defined
the other one is completely undetermined. For the conjugate opefatms D(a,,,) the
situation is different because the annihilation operéat not Hermitian and its eigenstates
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(equation (6)) form a highly overcomplete system of states [6,8]. As was first suggested
by von Neumann [10] and later proven in a number of publications [11-13] the discrete set
of coherent stategy,,,) with «,,, as given in equation (13) is complete. The,,)-states

are centred on a rectangular lattice in ttye-plane with a unit cell area of, the Planck
constant. This is the von Neumann lattice [14]. Having in mind thé&k)|0) = |«), one

can see from equation (14) that the gef,) assumes a simple form when written in the
kg-representation. (See the expression for generélg|a)) [13]

k) = (=2 exp( kb +ign > ) (10 (18)

where (kg|0) is the ground state of the harmonic oscillator in #herepresentation. The
latter is [9]

kg10) = (- )" 3 explikbmyvotq — nb)

b\ : (q — nb)?
= (2m3/2> ;exp(lkbn)exp[—W] (19)

1 \Y? x?
o= (13 “on(-2)

(» a constant) being the ground state of the harmonic oscillator incthepresentation.
The exponential term in equation (18) is similar to the function in equation (17)kd¢he
coordinates and the integers andn appear in the exponent of equation (18) in the same
way asx and p appear in (17). From this point of view there is a full analogy between
the conjugate pair$, p anda, D(a,,,). However, despite these similarities, the eigenstates
lan) for differentm andn are not orthogonal, and the square of the absolute value of the
function (kq|a,,,) in (18) is not a constant as in the case(ofp) (17). From equation (18)

we see that(kg |, )|? is

|(kqtmn) I = |(kq|0)|2. (20)

It does not depend om andrn but it depends ot andg. In this connection the following
remark can be made. For the operatérand p (both Hermitian), the shift relations hold

for both of them as given by equation (4). On the other hand, for the conjugate operators
a and D(a,,,) we have written only one shift relation Wit () being the shift operator

of a (equation (16)). The reason for this is thata,,,) is a unitary operator and is similar

to the operators in equation (3). However, sigcs not Hermitian, its exponentiation does

not lead to a unitary shift operator. We see, therefore, that while full symmetry exists for
the x and p conjugate operators, there is no such symmetry for the conjugate operators for
a and D(a,,,).

Having established that the SBX(a,) IS conjugate to the well known annihilation
operatora, it is of interest to consider more closely the properties and the significance of
ﬁ(am,,). It is simple to check that for any two statgly and|2) the wavefunctiong/;(x)
andy>(x) in the x-representation can be written

! | .
Vi = 5 [ exn(on) aiewn(—pin) 2 ap. @

Similarly, for their Fourier transform#y(p) and F»(p) we have

) . .
FX(p)Fa(p) = ——— exp(—'_px) al exp(}'_lﬁx) 12) dp. (22)

with

2rh h
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From equation (21) we see that for the product of the wavefunctigiis)y(x) in the x-
representation, the shift operator éxfii /7)x p) in p-space appears in the sandwich between
the stateg1l) and|2) on the right-hand side of this equation. Similarly, for the product
Ff(p)F2(p) in equation (22) the shift operator eXjy%)px) in x-space appears in the
sandwich on the right-hand side. One should expect that, for the prafktq)Ca(k, q)

of two wavefunctions in thég-representation, the shift operatdra,,,) in equation (12)
will appear, because it leads to discrete shifts both Bnd p-directions. Indeed, one can
show that [14]

1 A . 2 .
Citk,q)Catk,q) = 5= D (=" (LD (@)12) exp(wbn - Ikbm)

1 i 2
=5 > em(—%ﬁmb) eXp<i£nZ> 12) eXp<iq2;Tn - ikbm) . (29)

The expressions in equations (21)—(23) give interference terms between the Ktated
|2) in the x, p andkg-representations, respectively.

In the context of this paper, of particular interest is equation (23) which we rewrite for
the casdl) = |2) = |a) (Ja) being the coherent state):

|(kgla)|? = |Co (k, q)* = % ;(—1)"’”<06|5T(amn)lot> eXp<i92;Tn - ikbm) : (24)
By using the following formulae [6]
DY () D(@) = D(at — ) €XPI—2 (0 ety — )] (25)
(@|B) = exp(a’ B — 3lal® — 311 (26)
equation (24) becomes (witht /27 A% = 1)

thgle)f* = % WZ;(_DW exp| 7 (n® + )] exp[iZZ(q —n —ib (k - ;) m] :

(27)

Herex and p appear in the definition o in equation (7), and have the meaning of the
average coordinate and of the average momentum, respectively, in the coherefit)state

In view of the fact thati and D(,,,) are conjugate operators (equations (15) and (16))

it is of interest to consider the result in equation (27) in more detail. As was pointed out
before, the von Neumann set of coherent stitgs with s ands integers, is complete (see
equation (18)) [10-13]. It is easy to check that the expression in equation (27) does not
change wherx goes intox + sb, and p goes intop + th(2x /b):

[(kq|X + sb, p + th(21 /b)) |* = |(kq|%, p)I>. (28)

This is a generalization of the result in equation (20) and is a consequence of the periodicity
of |(kg|x, p)|? in ¥ and p. One can also rewrite equation (27) in the following way,

(kq|%, p)I* = [(k — (p/h), g — X|0)[? (29)
where by|0) we denote the ground state of the harmonic oscillator (equations (18) and
(19)). As is well known [13, 15], the wavefunctidh, ¢|0) has a zero & = /b, q = b/2.
In [15] a plot is given ofi(k¢|0)| which shows that(kg|0)|> has a maximum &t = ¢ = 0.
The result in equations (27) and (29) demonstrates, therefore, a very interesting feature of

the coherent statey) = |x, p) in the kg-representation: the probability of measuring the
qguasi-momentunt and the quasi-coordinatg is maximum wherk = p/h,q = x and it
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vanishes wheh—(p/h) = /b, q—x = b/2. This leads us to a new physical (non-intuitive)
interpretation of the zero of thigg-function (k¢|0). According to equation (29)% andg in

(kq|0) can be considered as the differences between the quasi and the average coordinates
and momenta. The zero dkq|0) then means that the coherent staiep) has nokg-
component foy —x = b/2, k — (p/h) = = /b. For another physical interpretation of a zero

of the kg-function the reader is referred to [16] in connection with the quantum Hall effect.

As was mentioned above, the variation limitsiofindg are 0< k < 27/b,0 < g < b.

This defines the von Neumann—Gabor unit cell in the phase plane [17]. As is seen from
equation (28) the probability of measurikgandg in any coherent state is fully determined

by its values in a von Neumann-Gabor unit cell.

In conclusion, it is shown that the annihilation operaiofor coherent states and the
commuting translation®) (a,.,) in the phase plane, which define the-representation,
form a set of conjugate operators. The eigenstatps=s |x, p) of a are the most localized
states in coordinate and momentunp, while the eigenstatelkq) of D () exhibit no
localization whatsoever im and p. The product of uncertainties assumes the minimum in
a coherent stateAxAp = h/2. In akg-state this product is infinite. It is very satisfying to
discover thati and D(amn) are conjugate operators.

The author acknowledges discussions with Professors A Grossmann, A Mann, M Marinov,
L Michel, A Peres and B Shapiro, and the support of this work by the Israel Science
Foundation.
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